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Stereoselectivity in the synthesis of polyprenylphosphoryl
b-DD-ribofuranoses
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Abstract—Decaprenylphosphoryl b-DD-arabinofuranose (DPA) is a key arabinose donor in mycobacteria. The ribo analog of DPA
(DPR) has also been found in mycobacteria. It has recently been confirmed that DPA is formed via a two-step epimerization of
DPR. The stereoselective synthesis of DPR as well as two shorter analogs of DPR is described.
� 2006 Elsevier Ltd. All rights reserved.
The global rise in tuberculosis and drug-resistant Myco-
bacterium tuberculosis still present a threat to human
health,1 and require the development of new drug tar-
gets and drugs. The DD-arabinan segments of the myco-
bacterial cell wall are excellent targets for new drug
development due to the xenobiotic status of DD-arabino-
furanose.2,3 A key mycobacterial arabinose donor, deca-
prenylphosphoryl b-DD-arabinofuranose (DPA), has been
found in the lipid extracts of Mycobacterium smegmatis
and implicated in the biogenesis of the two major cell
wall polysaccharides, arabinogalactan, and lipoarabino-
mannan.4 The ribo analog of DPA (DPR, 1, Fig. 1) has
also been found in mycobacteria5 and it has been
recently found that DPR is the precursor of DPA in
M. smegmatis.6 In order to study the enzymatic conver-
sion of DPR to DPA in a more detailed manner, it was
necessary to develop a synthesis of DPR that will yield
sufficient amount of the product. Accordingly, the ste-
reoselective synthesis of DPR has been accomplished.
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Figure 1. The structure of DPR.
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Also described in this manuscript is the stereoselective
synthesis of the analogous neryl and farnesyl products
(having C10 and C15 lipid chains, respectively).

Our first approach to the synthesis of DPR was based on
the scheme described for the analogous DPA product.7,8

According to this scheme, 2,3,5-tri-O-TBDMS-DD-ribose
(2, Scheme 1) was first synthesized from DD-ribose as de-
scribed for the arabino analog. Conversion of 2 into the
corresponding dibenzyl phosphate intermediate, using a
bromide as a donor, gave mainly the undesired a-1-
phosphate. However, when the trichloroacetimidate
derivative of 2 was employed a 2:1 b/a anomeric mixture
was obtained (as judged by TLC). Separation of the two
anomeric 1-phosphates was achieved by column chro-
matography and the b-anomer was isolated in 20% yield
(based on 2).9 Catalytic hydrogenolysis of the b-anomer
in ethanol in the presence of Pd/C 10% catalyst gave
phosphate intermediate 3. The next step in the synthesis,
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Scheme 1. Synthesis of nerylphosphoryl-2,3,5-tri-O-TBDMS b-DD-ribofuranose from a 1-phosphate intermediate.
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the coupling of 3 to a polyprenol, was studied by utiliz-
ing the more readily available C10 nerol (4). Thus, treat-
ment of 3 with the trichloroacetimidate derivative (5) of
nerol (4) as described before8 gave the tri-O-TBDMS
product 6 (in 28%).

The overall poor yield in the synthesis of 6 by Scheme 1
prompted us to seek a more straightforward and stereo-
selective approach to the synthesis of DPR and its ana-
logs. An alternative method, based on a phophoramidite
coupling, has already been applied to the synthesis of
DPA.2 However, in that instance the inactive a-anomer
(with the 1,2-trans configuration) was obtained as the
major product (favored by a 5:1 ratio).2 It was reason-
able to assume that in the case of DPR, the b-anomer
(which also has the 1,2-trans configuration) would be
the favored product. Following this prediction, the cou-
pling of nerol (4) and 2,3,5-tri-O-TBDMS-DD-ribose (2)
was then attempted. Nerol(4) was first treated with 2-
cyanoethyl N,N diisopropylchlorophosphoramidite and
the resulting phosphoramidite intermediate was coupled
with 2 in the presence of tetrazole. Subsequent oxidation
1. [(CH3)2CH]2NP(Cl)CH2CH
2. 2, tetrazole
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Scheme 2. Synthesis of DPR and analogs by the phosphoramidite method.
with hydrogen peroxide, followed by treatment with
methanolic KOH, gave nerylphophoryl-2,3,5-tri-O-
TBDMS b-DD-ribofuranose. After purification by column
chromatography, the product was found to be identical
(1H NMR, TLC) with 6 obtained by Scheme 1. As pre-
dicted, the phosphoramidite scheme was found to be
highly stereoselective, and only the b-anomer could be
isolated. Removal of the TBDMS groups by treatment
with ammonium fluoride in methanolic ammonia8 gave
nerylphosphoryl b-DD-ribofuranose (7).10

In a similar manner, phosphoramidite coupling of the
C15 trans, trans-farnesol (8) or decaprenol (9) with 2,
and subsequent deprotection produced the farnesyl ana-
log (10) and DPR (1),11 respectively. TLC examination
of 1 was consistent with the previous finding.12 The 1H
NMR spectrum of synthetic 1 was found to be in agree-
ment with the structure and very similar to the spectrum
of the natural product.5 The anomeric proton signal
appeared as a doublet (d 5.43, J = 4.8 Hz) as expected.
A full characterization of 1 is given in note13 (see
Scheme 2).
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The synthesis of shorter chain analogs (such as 7 and 10)
is important since the use of these products in enzymatic
assays will alleviate the solubility problem associated
with the highly hydrophobic DPR. Moreover, the short-
er polyprenols are significantly less expensive than deca-
prenol. In regard to the activity of the shorter chain
analogs, it has already been observed that polyprenyl
derivatives of mannosyl-1-phosphate in yeast showed
no selectivity for the polyprenyl chain length in the
transfer of mannose from polyprenylphosphoryl-man-
nose to an insoluble polymer.14 More relevantly, the
C10, citronellylphosphoryl b-DD-arabinofuranose exhib-
ited some donor activity in mycobacteria.15
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